

Thermal management of a greenhouse with adsorption energy storage

Mina Rouhani

Amir Sharafian, Poovanna Cheppudira, Wendell Huttema and Majid Bahrami

Laboratory for Alternative Energy Conversion

New composites

FAM-Z02 pellets

FAM-Z02 coating

Sorption cooling system Cooling power = 500 W/kg sorbent

Research:

Lab-scale Sorption Chillers
Composite sorbents
Sorption thermal storage
Capillary-assisted low pressure evaporators

Energy demand and environmental impact

- Greenhouses are the most energy consuming agricultural sectors
- In cold climates, **65-85**% of total energy consumed by greenhouses is for heating [1].
- Fossil fuel consumption is a significant crop production cost and GHG source [2].

- [1] Vadiee A., Martin V., Appl Energy 2014, 114, 880-888.
- [2] Statistics Canada, Energy Supply and Demand in Canada, 2013.

Thermal Energy Storage System

- Buildings may satisfy their own heating/cooling demands if excess of thermal energy can be stored and accessed when needed
- Thermal energy storage (TES) reduces energy consumption and GHG by:
 - i. Utilizing waste heat or renewables (Solar energy)
 - ii. Mitigate the mismatch between supply and demand of energy
 - iii. Time-shift use of renewable energy to the peak energy demand

Why Sorption Storage?

- High energy storage density (ESD=Q_{stored} /V_, GJ·m⁻³)
- low heat loss

Short Term (Daily) Heat Storage

Average heating load	50 W·m⁻²
Daily heating demand per square meter	4.35 MJ·m ⁻²
Greenhouse area	10000 m ²
Daily heating demand	43.5 GJ

PCM	S19 (salt hydrate)	179 m^3
a		25 2

Sorption SWS-1 V (Vermiculite CaCl₂) [4] 35 m³

[3] A. Vadiee and V. Martin, Appl. Energy, vol. 109, pp. 337–343, 2013.

[4] Y. I. Aristov, Futur. Cities Environ., vol. 1, no. 1, p. 10, 2015.

SFU Analysis of sorption thermal energy storage for greenhou

Preliminary study and feasibility analysis of a sorption TES in greenhouse

Climate zones: **Oceanic, temperate**

Discharge duration: **Daily**

Heat sources: Solar energy, waste heat

Greenhouse type: Closed greenhouse

- Improved control of system [1]
- Improved total efficiency of system
- Decreased usage of pesticides
- Increased use of renewable energy

Climate Control in Greenhouses

To maintain good growing conditions, heating and **cooling** may be required **in the same day**, due to:

Ambient temperature fluctuation

Solar radiation

Plant evapotranspiration

120

Dry bulb temperature [°C]

Proposed Sorption TES for GH

Thermal Management System Modeling Modules

GH module:

(Heating/cooling load calculation)

- T_{target}, crop properties
- \blacksquare $\mathsf{T}_{\mathsf{amb}}$, $\mathsf{I}_{\mathsf{rad}}$, $\mathsf{V}_{\mathsf{air}}$
- GH parameters
- Load calculation

$$\sum$$
 heat loss $-\sum$ heat gain

$$= Q_{rad} + Q_{lamp} - Q_{wall}$$
$$-Q_{trans} - Q_{vent}$$

GH heating/cooling demand

Sorption TES module:

- Heating/cooling load
- Operating conditions (including Q_{des} ,

 $\mathsf{T}_{\mathsf{des}}$)

- Selecting adsorbent
- Sizing of the sorption TES (all components), based on the heating/cooling demand
- Sorption fully-dynamic thermodynamic cycle modeling

Adsorption/evaporation power

Control module:

Check if T_{GH} is close enough to T_{target}.
 Change design parameters if necessary.

Optimization

GH Module: Thermal Load Calculation of the GH

$$\frac{dT_{GH}}{dt} = \frac{1}{C_{GH}} \left(Q_{rad} + Q_{lamp} - Q_{wall} - Q_{trans} - Q_{vent} - Q_{HEX,c} + Q_{HEX,h} \right)$$

S-TES Module: Sorption Fully-dynamic Thermodynamic Model

- Lumped-body thermodynamic model
- Fully-dynamic
- Equilibrium condition between adsorbate and adsorbent
- Linear driving forced model for non-equilibrium uptake rate,

$$\frac{d\omega}{dt} = \frac{15D_{so} \exp\left(-\frac{E_a}{RT}\right)}{r^2} \left(\omega_{eq} - \omega\right)$$

Results: Thermal Load of a GH in Vancouver

Mid-July, Vancouver

Target temperature: 19°C (lettuce)

GH dimensions: 8×50×3 m³

Results: Adsorption/evaporation Power to Meet the GH Thermal Demand

Adsorbent: FAM-Z02

Results: Return Water Temperature Variations

Scenario I) Controlled delivered heat:

Discharge power to GH = $Q_{GH \ demand}$

Scenario II) Uncontrolled delivered heat:

Discharge power to GH = $Q_{ADS/EVAP}$

Challenges for Two Heating/Cooling Energy Delivery Scenarios

Scenario I) Discharge power to GH = $\dot{Q}_{GH \ demand}$

 Thermal load control in the HEX/Buffer before the greenhouse (Buffering the temperature)

Scenario II) Discharge power to GH =

 $Q_{ADS/EVAP}$

Variable flowrate pump

Summary and Future Work

Summary:

- A sorption TES is proposed for temperature control of GH (preliminary study).
- A model developed which contains the heat load calculation module, fully-dynamic sorption modeling module and control module.

Future work:

- Economical feasibility assessment of the sorption TES system with different control strategies.
- Optimization of the sorption TES system.

Thank you for your attention!

Partners:

Research Greenhouse Institute for Sustainable Horticulture, Kwantlen Polytechnic University

IBACK-UP SLIDES

Open Greenhouse versus Closed Greenhouse

Open greenhouse [1]:

- Economic limitations associated with energy consumption,
- Restriction on crop delivery date due to the seasonal climate conditions.
- Need for a better pesticides control and CO₂ enrichment system

Closed greenhouse [1]:

- Improved energy efficiency.
- Improved water conservation.
- Improved production rate.
- Improved control of system.
- Improved total efficiency of system.
- Improved sustainable management.
- Decreased usage of pesticides.
- Reduced costs.
- Increased use of renewable energy which leads to reduced greenhouse gas emission from fossil fuels.

SFU

Large local greenhouse facilities

- 111 500 m² (35 acres, 1.2 million ft²)
- Greenhouses split into 50 separate zones up to 30 crop types per zone
- 3 climatic control systems

Greenhouse with natural gas boilers and heat storage is water tanks

Greenhouse: 17,500 m² of peppers, tomatoes, cucumbers

Optimal temperature: 22°C day, 17°C night

Greenhouse with natural gas boilers and heat storage is water tanks

Greenhouse:

17,500 m², peppers, tomatoes, cucumbers

Cooling: Roof vents

Heating: Boiler and in water tank

heat storage.

Optimal temperature: 22°C day, 17°C night

 Average high temperatures Average low temperatures

- The boiler is run during the day to elevate CO₂ (~1000 ppm) for optimal plant growth
- CO₂ generation is not required at night
- Water tanks store heat from the boiler during the day for use at night

New sustainable greenhouse research program

- Assess energy consumption and climate control needs of local greenhouses
- Develop and test new heat-driven systems for climate control in a research greenhouse compartment
- Small-scale greenhouse germination and growth trials

Thermal energy storage

Sorption cooling systems

Desiccant heat and moisture recovery systems

Partners:

Research Greenhouse Institute for Sustainable Horticulture, Kwantlen Polytechnic University

SFU Solutions for Energy-efficient Clean-energy Greenhouses

Closed GH:

- i. No ventilation windows
- ii. Reduces heat loss
- iii. Cooling and dehumidification
- iv. Integrated with heat storage
- Thermal energy storage (TES) reduces energy consumption and GHG by:
 - Utilizing waste heat or renewables (Solar energy)
 - Mitigate the mismatch between supply and demand, due to Intermittent output of heat sources.
 - iii. Time-shift of renewable energy to peak demand

Daily TES Integrated with HVAC of GH

Peak load shaving

- Heat supply from: Solar energy
 Daily GH energy consumption in cold weather ~ 9 MJ/m² [8]
 Total solar irradiation in midday: about 10.8 MJ/m² [8]
- Heat demand at: Peak load

■ Greenhouse combined heat and power (Greenhouse CHP)

- Heat supply from: waste heat of CHP
- Heat demand at: Standby mode

SFU

.3 Ideal temperature and relative humidity zones for few greenhouse prod

BACK-UP SLIDES

Closed sorption TES: temperature control in a GH

Why closed system?

- Having one unit for both heating and cooling.
- Keep humidity in the desirable range for plants.
- Existence of water piping for heating in the greenhouses.
- No interest in circulating air in the greenhouse (in the visited GH).
- Possibility of using aircooled condenser and aircooled adsorber bed to eliminate need for pumping water or oil in these HEXs.

