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Laboratory  for Alternative Energy Conversion

Sorption cooling system
Cooling power = 500 W/kg sorbent

Adsorption 
thermal 
storage 
system

Research:

Lab-scale Sorption Chillers
Composite sorbents
Sorption thermal storage
Capillary-assisted low pressure evaporators

FAM-Z02 coatingFAM-Z02 pelletsNew composites
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▪ Greenhouses are the most energy consuming agricultural sectors 

▪ In cold climates, 65-85% of total energy consumed by greenhouses is for heating [1].

▪ Fossil fuel consumption is a significant crop production cost and GHG source [2].

Energy demand and environmental impact

[1] Vadiee A., Martin V., Appl Energy 2014, 114, 880-888.
[2] Statistics Canada, Energy Supply and Demand in Canada, 2013.
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Thermal Energy Storage System

▪ Buildings may satisfy their own heating/cooling demands if excess of
thermal energy can be stored and accessed when needed

▪ Thermal energy storage (TES) reduces energy consumption and GHG by:

i. Utilizing waste heat or renewables (Solar energy)

ii. Mitigate the mismatch between supply and demand of energy

iii. Time-shift use of renewable energy to the peak energy demand

Thermal 
Battery QTB
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Why Sorption Storage?

• High energy storage density (ESD=Qstored /V, GJ∙m-3)

• low heat loss
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Short Term (Daily) Heat Storage

Average heating load 50 W∙m-2

Daily heating demand 
per square meter 

4.35 MJ∙m-2

Greenhouse area 10000 m2

Daily heating demand 43.5 GJ

[3] A. Vadiee and V. Martin, Appl. Energy, vol. 109, pp. 337–343, 2013.
[4] Y. I. Aristov, Futur. Cities Environ., vol. 1, no. 1, p. 10, 2015.

Winter day in Stockholm [3]

Hour

H
ea

ti
n
g
 l

o
ad

, 
W

∙m
-2

Stand-alone heat storage for daily heating of 43.5 GJ

PCM S19 (salt hydrate) 179 m3

Sorption SWS-1 V (Vermiculite CaCl2) [4] 35 m3

35 m3

179 m3
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▪ Preliminary study and feasibility analysis of a sorption TES in greenhouse

Climate zones:   Oceanic, temperate

Discharge duration: Daily

Heat sources: Solar energy, waste heat

Greenhouse type: Closed greenhouse

• Improved control of system [1]

• Improved total efficiency of system

• Decreased usage of pesticides

• Increased use of renewable energy

Analysis of sorption thermal energy storage for greenhouses

T
em

p
er

at
u

re

Time

Desired temp

Ambient temp

Heat  

surplus

Heat  

deficit

Store this 

heat



8

Climate Control in Greenhouses

[4] M. Sultan, Thesis, Kyushu University, 2015.

Tomatoes

Chilies

Most fruits & 
vegetables

Cucumber

To maintain good growing conditions, heating and 

cooling may be required in the same day, due to: 

▪ Ambient temperature fluctuation
▪ Solar radiation
▪ Plant evapotranspiration
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Qcond

Proposed Sorption TES for GH
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storage 
system

HeatingCooling
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Thermal Management System Modeling Modules

Control module:
▪ Check if TGH is close enough to Ttarget . 

Change design parameters if necessary.

GH module:
(Heating/cooling load calculation)

▪ Ttarget , crop properties 
▪ Tamb , Irad , Vair

▪ GH parameters

GH heating/cooling 
demand

෍ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 −෍ℎ𝑒𝑎𝑡 𝑔𝑎𝑖𝑛

= 𝑄𝑟𝑎𝑑 + 𝑄𝑙𝑎𝑚𝑝 − 𝑄𝑤𝑎𝑙𝑙
−𝑄𝑡𝑟𝑎𝑛𝑠 − 𝑄𝑣𝑒𝑛𝑡

Sorption TES module:

▪ Heating/cooling load
▪ Operating conditions (including Qdes , 
Tdes )

▪ Selecting adsorbent
▪ Sizing of the sorption TES (all components),
based on the heating/cooling demand
▪ Sorption fully-dynamic thermodynamic cycle 
modeling

Adsorption/evaporation power 

▪ Load calculation

Optimization
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𝑄𝑟𝑎𝑑 𝑄𝑙𝑎𝑚𝑝

𝑄𝐻𝐸𝑋,ℎ𝑄𝐻𝐸𝑋,𝑐

𝑄𝑡𝑟𝑎𝑛𝑠 𝑄𝑤𝑎𝑙𝑙

𝑄𝑣𝑒𝑛𝑡

𝑄𝑟𝑎𝑑 = 𝜏 𝐼𝑟𝑎𝑑

𝑄𝑙𝑎𝑚𝑝 = 𝜂 𝑃𝐸 𝑓𝑜𝑛

𝑄𝑡𝑟𝑎𝑛𝑠 =
2𝐿𝐴𝐼 𝑥𝑐𝑟𝑜𝑝 − 𝑥𝑎𝑖𝑟 𝐿

1 + 𝜖 𝑅𝑏 + 𝑅𝑠

𝑄𝑣𝑒𝑛𝑡 = 𝑔𝑣 𝜌𝑎𝑖𝑟 𝑐𝑝,𝑎𝑖𝑟 𝑇𝑎𝑖𝑟 − 𝑇𝑎𝑚𝑏

𝑄𝑤𝑎𝑙𝑙 = 𝑈
𝐴𝑤𝑎𝑙𝑙
𝐴𝑓𝑙𝑜𝑜𝑟

𝑇𝐺𝐻 − 𝑇𝑎𝑚𝑏

𝐻𝑒𝑎𝑡 𝑙𝑜𝑎𝑑 =෍ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 −෍ℎ𝑒𝑎𝑡 𝑔𝑎𝑖𝑛

𝑑𝑇𝐺𝐻
𝑑𝑡

=
1

𝐶𝐺𝐻
𝑄𝑟𝑎𝑑 + 𝑄𝑙𝑎𝑚𝑝 − 𝑄𝑤𝑎𝑙𝑙 − 𝑄𝑡𝑟𝑎𝑛𝑠 − 𝑄𝑣𝑒𝑛𝑡 − 𝑄𝐻𝐸𝑋,𝑐 + 𝑄𝐻𝐸𝑋,ℎ

≈ 𝟎

GH Module: 

Thermal Load Calculation of the GH
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S-TES Module: 

Sorption Fully-dynamic Thermodynamic Model

▪ Lumped-body thermodynamic model

▪ Fully-dynamic

▪ Equilibrium condition between adsorbate and adsorbent

▪ Linear driving forced model for non-equilibrium uptake rate,

0

100

200

300

400

500

E
S

D
, 
M

Jm
-3

Case I                    Case II                Case III

Measured

Model

tdes=400 s

tads=650 s

tdes=800 s

tads=1300 s

tdes=1600 s

tads=2600 s

 














eq2

s

a

0S

r

RT

E
expD15

dt

d



13

Results: Thermal Load of a GH in Vancouver

Mid-July, Vancouver

Target temperature: 19˚C (lettuce)

GH dimensions: 8×50×3 m3
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Results: Adsorption/evaporation Power to Meet 

the GH Thermal Demand

Adsorbent: FAM-Z02
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Results: Return Water Temperature Variations

▪ Scenario I) Controlled delivered heat:
Discharge power to GH =   

▪ Scenario II) Uncontrolled delivered heat:
Discharge power to GH =     ሶ𝑄𝐴𝐷𝑆/𝐸𝑉𝐴𝑃

ሶ𝑄𝐺𝐻 𝑑𝑒𝑚𝑎𝑛𝑑

Scenario I

Scenario II

(Scenario I)

(Scenario II)
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Challenges for Two Heating/Cooling 
Energy Delivery Scenarios

Scenario I) Discharge power to GH = 

Scenario II) Discharge power to GH =     ሶ𝑄𝐴𝐷𝑆/𝐸𝑉𝐴𝑃

ሶ𝑄𝐺𝐻 𝑑𝑒𝑚𝑎𝑛𝑑

▪ Variable flowrate pump

▪ Thermal load control in the HEX/Buffer before the 
greenhouse (Buffering the temperature)
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Summary:

▪ A sorption TES is proposed for temperature control of GH (preliminary study).

▪ A model developed which contains the heat load calculation module, fully-dynamic sorption 

modeling module and control module.

Future work:

▪ Economical feasibility assessment of the sorption TES system with different control strategies.

▪ Optimization of the sorption TES system. 

Summary and Future Work
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Thank you for your attention!

Simon Fraser University,

Surrey campus
LAEC team members

Partners: 

Research Greenhouse

Institute for Sustainable Horticulture, 

Kwantlen Polytechnic University
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BACK-UP 

SLIDES
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Open Greenhouse versus Closed Greenhouse

Open greenhouse [1]:

• Economic limitations associated with energy consumption,
• Restriction on crop delivery date due to the seasonal climate conditions. 
• Need for a better pesticides control and CO2 enrichment system

Closed greenhouse [1]:
• Improved energy efficiency.
• Improved water conservation.
• Improved production rate.
• Improved control of system.
• Improved total efficiency of system.
• Improved sustainable management.
• Decreased usage of pesticides.
• Reduced costs.
• Increased use of renewable energy which leads to reduced greenhouse gas 

emission from fossil fuels.

[1] A. Vadiee and V. Martin, Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 5087–5100, 2012.
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Large local greenhouse facilities

▪ 111 500 m2 (35 acres, 1.2 million ft2)

▪ Greenhouses split into 50 separate zones up to 30 crop types per zone

▪ 3 climatic control systems
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Greenhouse with natural gas boilers and heat storage is water tanks

Greenhouse:  17,500 m2 of peppers, tomatoes, cucumbers 
Optimal temperature: 22°C day, 17°C night

We are working with local 
greenhouses to learn: 
▪ Crop growth requirements
▪ Current climate control 

methods
▪ Energy consumption
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Greenhouse with natural gas boilers and heat storage is water tanks

Greenhouse:

17,500 m2, peppers, tomatoes, cucumbers

Cooling: Roof vents

Heating:  Boiler and in water tank 
heat storage. 

Optimal temperature: 22°C day, 17°C night

Oceanic climate

▪ The boiler is run during the day to 
elevate CO2 (~1000 ppm) for optimal 
plant growth

▪ CO2 generation is not required at night  

▪ Water tanks store heat from the boiler 
during the day for use at night

Heating
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New sustainable greenhouse research program

Research Greenhouse

Institute for Sustainable Horticulture, 

Kwantlen Polytechnic University

Partners:

▪ Assess energy consumption and 
climate control needs of local 
greenhouses

▪ Develop and test new heat-driven 
systems for climate control in a 
research greenhouse compartment

▪ Small-scale greenhouse germination 
and growth trials 

Thermal energy storage

Sorption cooling systems

Desiccant heat and 
moisture recovery systems
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Solutions for Energy-efficient Clean-energy Greenhouses

▪ Closed GH:

i. No ventilation windows

ii. Reduces heat loss

iii. Cooling and dehumidification

iv. Integrated with heat storage

▪ Thermal energy storage (TES) reduces

energy consumption and GHG by:

i. Utilizing waste heat or renewables (Solar

energy)

ii. Mitigate the mismatch between supply

and demand, due to Intermittent output of

heat sources.

iii. Time-shift of renewable energy to peak

demand

Vadiee A., Martin V., Applied Energy 114 (2014) 880

Heating Cooling
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▪ Peak load shaving

- Heat supply from: Solar energy

Daily GH energy consumption in cold weather ~ 9 MJ/m2 [8]

Total solar irradiation in midday: about 10.8 MJ/m2 [8]

- Heat demand at: Peak load

▪ Greenhouse combined heat and power (Greenhouse CHP)

- Heat supply from: waste heat of CHP

- Heat demand at: Standby mode

Daily TES Integrated with HVAC of GH
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Closed sorption TES: temperature control in a GH

Why closed system?
▪ Having one unit for both

heating and cooling.

▪ Keep humidity in the

desirable range for plants.

▪ Existence of water piping

for heating in the

greenhouses.

▪ No interest in circulating

air in the greenhouse (in

the visited GH).

▪ Possibility of using air-

cooled condenser and air-

cooled adsorber bed to

eliminate need for pumping

water or oil in these HEXs.

BACK-UP

SLIDES


